Splitting of Short Exact Sequences for Modules

نویسنده

  • KEITH CONRAD
چکیده

(1.1) 0 −→ N f −−→M g −−→ P −→ 0 which is exact at N , M , and P . That means f is injective, g is surjective, and im f = ker g. Example 1.1. For an R-module M and submodule N , there is a short exact sequence 0 // N // M // M/N // 0, where the map N →M is the inclusion and the map M →M/N is reduction modulo N . Example 1.2. For R-modules N and P , the direct sum N ⊕ P fits into the short exact sequence 0 // N // N ⊕ P // P // 0, where the map N → N ⊕ P is the embedding n 7→ (n, 0) and the map N ⊕ P → P is the projection (n, p) 7→ p. Example 1.3. Let I and J be ideals in R such that I+J = R. Then there is a short exact sequence 0 // I ∩ J // I ⊕ J + // R // 0, where the map I ⊕ J → R is addition, whose kernel is {(x,−x) : x ∈ I ∩ J}, and the map I∩J → I⊕J is x 7→ (x,−x). This is not the short exact sequence 0 −→ I −→ I⊕J −→ J −→ 0 as in Example 1.2, even though the middle modules in both are I ⊕ J . Any short exact sequence that looks like the short exact sequence of a direct sum in Example 1.2 is called a split short exact sequence. More precisely, a short exact sequence 0 −→ N f −−→ M g −−→ P −→ 0 is called split when there is an R-module isomorphism θ : M → N ⊕ P such that the diagram

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REES SHORT EXACT SEQUENCES OF S-POSETS

In this paper the notion of Rees short exact sequence for S-posets is introduced, and we investigate the conditions for which these sequences are left or right split. Unlike the case for S-acts, being right split does not imply left split. Furthermore, we present equivalent conditions of a right S-poset P for the functor Hom(P;-) to be exact.

متن کامل

ON PROJECTIVE L- MODULES

The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...

متن کامل

Relatively Extending Modules

We investigate a generalization of extending modules relative to a class of modules and a proper class of short exact sequences of modules.

متن کامل

A Crossed Module giving the Godbillon-Vey Cocycle

We exhibit crossed modules (i.e. certain 4 term exact sequences) corresponding to the Godbillon-Vey generator for W1, V ect(S ) and V ect1,0(Σ). Introduction There is a well known correspondence in homological algebra between (equivalence classes of) exact sequences Λ-modules, starting in M and ending in N with nmodules in between, and elements of ExtΛ(N,M). For Λ = U(g) the universal envelopin...

متن کامل

Relatively lifting modules

We consider a generalization of lifting modules relative to a class A of modules and a proper class E of short exact sequences of modules. These modules will be called E-A-lifting. We establish characterizations of modules with the property that every direct sum of copies of them is E-A-lifting. 2000 Mathematics Subject Classification: 16S90, 16D80.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009